
title: My Markdown Document $type: article

https://stackblitz.com/github/code-hike/v1-starter?file=app%2Fscrollycoding%2Fcontent.md

I. Introduction

Machine
Operating System: Ubuntu 24.04

II. Setting up the Host Machine

Setting up SSH
Generating an SSH Key Pair
Sending the Public Key to the Cloud
Configuring the SSH Client

Setting up LXD on Ubuntu
Why LXD?
Installing LXD
Initializing LXD
LXD Configuration Options

III. Initial Setup for Ubuntu Cloud Instance with ZFS and MicroK8s

┌─(~)──(ROOT@phoenix1733435735:pts/0)─┐
└─(00:24:03)──> lxd init ──(Fri,Dec20)─┘

Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]: kube_zfs
Name of the storage backend to use (zfs, btrfs, ceph, dir, lvm, powerflex) [default=zfs]:
Create a new ZFS pool? (yes/no) [default=yes]:
Would you like to use an existing empty block device (e.g. a disk or partition)? (yes/no) [default=no]:
Size in GiB of the new loop device (1GiB minimum) [default=30GiB]: 400GiB
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Would you like the LXD server to be available over the network? (yes/no) [default=no]: yes
Address to bind LXD to (not including port) [default=all]:
Port to bind LXD to [default=8443]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]:
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:
┌─(~)──

Installing ZFS Tools
Setup Profile for Creating Containers
Creating a Container with MicroK8s
Installing MicroK8s inside the Container

I. Introduction

Setting up ZSH on a fresh Ubuntu instance
Benefits of using ZSH over traditional shells like Bash

description: This is a sample Markdown document

Part One: The Host

Part Two: The Container

II. Setting up ZSH Environment

Installing ZSH using apt

Setting ZSH as the default shell
Installing git and curl

Installing Oh My ZSH framework

Configuring additional ZSH settings and plugins
Defining a custom function hist() for filtering command history
Enabling vi-mode keybindings
Setting the ZSH theme and plugins
Setting the default editor to vim

Defining aliases for microk8s kubectl commands

III. Microk8s Setup

Installing MicroK8s using snap

Enabling various MicroK8s features

Setting up restart protection for MicroK8s using AppArmor

IV. K9s Installation

Installing K9s on Ubuntu
Configuring K9s to use the Kubernetes configuration file

V. OpenEBS ZFS Operator Installation

Installing the OpenEBS ZFS operator
Setting the default storage class to openebs-zfspv

VI. Creating a Persistent Volume Claim (PVC)

Creating a PVC to request storage resources
Defining a storage class YAML file

VII. Setting up Persistent Storage in Kubernetes

Creating a ZFS pool for storage class
Defining a storage class YAML file
Creating a PVC to request storage resources

VIII. Nginx Deployment - PVC Test

Creating a Kubernetes deployment that uses a PVC
Defining a deployment YAML file

IX. Nginx Deployment - MetalLB Test

Creating a Kubernetes deployment that uses MetalLB
Defining a deployment YAML file

X. Setting up Ollama and Open-WebUI on Ubuntu with Kubernetes

Creating a ZFS pool for llm storage class

zsh_setup.sh

zsh_extra.sh

microk8s_setup.sh

microk8s_restart_protection.sh

k9s_setup.sh

openebs_zfs_operator.sh

Defining a storage class YAML file
Creating a namespace for deployments
Defining a PVC to request storage resources
Creating deployments for Ollama and Open-WebUI

XI. Setting up LiteLLM on a New Ubuntu Cloud Instance

Configuring LiteLLM using a config.yaml file
Creating a ConfigMap to store configuration data
Defining a Deployment YAML file to deploy LiteLLM
Creating a Service to make LiteLLM available to other pods

I'm always interested in find economical ways to explore new technologies. However, when you go this route you find that there are more problems to solve. Whereas if
one uses AWS, Azure or other cloud providers Kubernetes infrastructures are provide with loadbalancers and gateways. This article aims to assist in setting up the
infrasturture to get you working in an economical fully functional environment. The cloud instance is provisioned by SSDNodes. They have an assortment of configuration
and terms. We will leave the aspect of abtaining a cloud instance to the reader.

The Goal of the project is to setup a basic kubernetes infrastructure. Then with in that Kubernetes environment deploy a LLM environment, similar to ChatGPT, for private
explorations.

The environment setup will be in three parts:

1. The Host Setup

In this part we will configure:

SSL
Zsh/OhMyZsh
LXD
ZFS

2. The Container Setup

Here we will configure:

Zsh/OhMyZsh
Microk8s
MetalLB
k9s
OpenEBS
Test Deployments to validate configuration
CloudFare

3. Deployment of the LLM environment

Install:

Ollama
Open-WebUI
LiteLLM

Hardware: Performance 48GB RAM (720GB NVMe) with 12 vCPUs
Operating System: Ubuntu 24.04

Introduction

Goals of Project

Machine

Architecture

https://www.ssdnodes.com/

Setting up SSH (Secure Shell) is an essential step in making your cloud instance easily accessible. In this section, we'll go through the process of generating an SSH key
pair, sending the public key to the cloud, and configuring the SSH client to use the key.

To generate an SSH key pair, we'll use the ssh-keygen command. This command will prompt you to save the key pair in a file, and you can choose to use the default
location ~/.ssh/kube_key .

ssh-keygen

This will generate a private key (kube_key) and a public key (kube_key.pub) in the ~/.ssh directory.

Next, we need to send the public key to the cloud instance. We'll use the ssh command to connect to the instance and append the public key to the
authorized_keys file.

Executed on your local machine
bash cat ~/.ssh/kube_key.pub | ssh root@104.225.219.54 "mkdir -p ~/.ssh && touch ~/.ssh/authorized_keys && chmod -R go= ~/.ssh && cat >> ~/.ssh/authorized_keys"

Let's break down this command:

cat ~/.ssh/kube_key.pub reads the contents of the public key file.
ssh root@104.225.219.54 connects to the cloud instance as the root user.

The command inside the quotes creates the .ssh directory and authorized_keys file if they don't exist, sets the correct permissions, and appends the public
key to the authorized_keys file.

Note this will prompt you for the password for root.

Setting up the Host Machine

Setup SSH

Generating an SSH Key Pair (local machine)

Sending the Public Key to the Cloud

To make it easier to connect to the cloud instance, we'll add an entry to the SSH client configuration file (~/.ssh/config). Again this is on your local machine.
Host kube_key HostName 104.225.219.54 IdentityFile ~/.ssh/kube_key User root

This configuration tells the SSH client to:

Use the kube_key alias to connect to the instance.
Connect to the instance at 104.225.219.54 .
Use the private key ~/.ssh/kube_key for authentication.
Log in as the root user.

With these steps, you should now be able to connect to your cloud instance using SSH without entering a password.

Now you can login with the following:

ssh root@104.225.219.54

ssh-keygen -t rsa -b 4096 -C "david@persistentdesigns.com"
eval "$(ssh-agent -s)"
ssh-add ~/.ssh/id_rsa

cat ~/.ssh/id_rsa.pub
take public part of key and place it in github

Test it out
ssh -T git@github.com

root@kubernetes:~# ssh -T git@github.com
The authenticity of host 'github.com (140.82.112.3)' can't be established.
ED25519 key fingerprint is SHA256:+DiY3wvvVxxxxxxxsF/zLDAxxxxxHdkr4UvCOqU.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
Hi davidsells! You've successfully authenticated, but GitHub does not provide shell access.

apt update
apt install git -y

Get on with Git Work
git clone git@github.com:davidsells/setup_llm.git

If you run into difficulties you'll find a wonderful write up at Digital Ocean.

In this article, we will explore the initial setup required for a new cloud instance of Ubuntu, focusing on configuring ZSH as our shell of choice. ZSH provides many benefits
over traditional shells like Bash, including improved tab completion, themes, and plugins.

This script sets up the foundation for our ZSH environment. Let's break it down:

Configuring the SSH Client (local Machine)

Setting up Github

Update apt and get git

Get Repository With DevOps Scripts

Setting up ZSH and OhMyZsh

zsh_setup.sh

https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-on-ubuntu-20-04

#!/bin/bash
Update the package list to ensure we have the latest package information
apt update
Install ZSH using apt
apt install -y zsh
Set ZSH as the default shell
chsh -s /usr/bin/zsh
Verify that ZSH is installed correctly
which zsh
Install git, a essential tool for any developer
apt install -y git
Install curl, which we'll use to download the Oh My ZSH installation script
apt install -y curl
Download and install Oh My ZSH, a popular ZSH framework
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"

This script does the following:

Updates the package list using apt update

Installs ZSH using apt install -y zsh

Sets ZSH as the default shell using chsh -s /usr/bin/zsh

Verifies that ZSH is installed correctly using which zsh

Installs git and curl using apt install -y

Installs Oh My ZSH using a script downloaded from GitHub

This script configures some additional ZSH settings and plugins. Let's dive in:

#!/bin/bash

Append the following lines to the ~/.zshrc file
cat >> ~/.zshrc <<EOF

Define a custom function called hist() that allows us to filter the command history
hist() {
 theFilter="history "
 for var in "$@"
 do
 theFilter+="| grep $var"
 done
 eval $theFilter
}

Enable vi-mode keybindings
bindkey -v

Set the ZSH theme to "jonathan" (commented out)
ZSH_THEME="jonathan"

Enable the git and z plugins
plugins=(git z)

Set the default editor to vim
export VISUAL=vim
export EDITOR="$VISUAL"

Define aliases for microk8s kubectl commands
alias ku='microk8s kubectl'
alias kubectl='microk8s kubectl'

EOF

This script does the following:

Defines a custom function hist() that allows us to filter the command history using grep

Enables vi-mode keybindings using bindkey -v

Sets the ZSH theme to "jonathan" (although this line is commented out)
Enables the git and z plugins

zsh_extra.sh

Sets the default editor to vim using export VISUAL=vim and export EDITOR="$VISUAL"

Defines aliases for microk8s kubectl commands using alias ku='microk8s kubectl' and alias kubectl='microk8s kubectl'

By running these two scripts, we've set up a solid foundation for our ZSH environment, including installing ZSH, Oh My ZSH, and configuring some useful plugins and
settings.

In this section, we'll cover the steps to set up LXD on a fresh Ubuntu cloud instance. LXD is a containerization platform that provides a secure and scalable environment
with minimal overhead.

LXD provides a layer of security and separation of devops concerns, which is essential for our Kubernetes deployment. It allows us to manage our workloads with ease
and configure them to suit our use case via a user-friendly web interface.

To install LXD, we'll use the snap package manager, which is the recommended way to install LXD on Ubuntu.

sudo snap install lxd

This command will download and install the LXD snap package.

chmod -a -G lxd david

Logout and log back in to apply the new group to your session.

Once LXD is installed, we need to initialize it using the following command:

lxd init

This command will prompt us to configure LXD. We'll walk through the options and explain what each one does:

During the initialization process, we'll be asked a series of questions to configure LXD. Here's what each option does:

LXD clustering: This option enables LXD clustering, which allows multiple LXD servers to work together as a single cluster. For our purposes, we can leave this set
to the default value of no .
Storage pool: We'll configure a new storage pool, which is where LXD will store its data. We'll name this pool kube_zfs .
Storage backend: We'll use the ZFS storage backend, which provides a scalable and reliable storage solution.
Create a new ZFS pool: We'll create a new ZFS pool, which will be used to store our data.
Use an existing empty block device: We won't use an existing block device, but instead create a new one.
Size of the new loop device: We'll allocate 100GiB of storage space from the current drive using a loop device. Note that you may want to adjust this value
depending on your specific use case.
MAAS server: We won't connect to a MAAS (Metal as a Service) server, so we'll leave this set to no .
Create a new local network bridge: We'll create a new local network bridge, which will allow our LXD containers to communicate with each other.
Bridge name: We'll name our bridge lxdbr0 , which is the default value.
IPv4 and IPv6 addresses: We'll use automatic IP address assignment for both IPv4 and IPv6.
Make LXD server available over the network: We won't make the LXD server available over the network, so we'll leave this set to no .
Update stale cached images: We'll enable automatic updates for stale cached images.

Setting up LXD on Ubuntu

Why LXD?

Installing LXD

Add User 'david' to the LXD group

Initializing LXD

LXD Configuration Options

Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]: kube_zfs
Name of the storage backend to use (zfs, btrfs, ceph, dir, lvm, powerflex) [default=zfs]:
Create a new ZFS pool? (yes/no) [default=yes]:
Would you like to use an existing empty block device (e.g. a disk or partition)? (yes/no) [default=no]:
Size in GiB of the new loop device (1GiB minimum) [default=30GiB]: 400GiB
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Would you like the LXD server to be available over the network? (yes/no) [default=no]: yes
Address to bind LXD to (not including port) [default=all]: 23.29.118.75
Port to bind LXD to [default=8443]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]:
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:

After configuring these options, LXD will be initialized and ready for use. In the next section, we'll cover the installation of MicroK8s, which will use LXD as its container
runtime.

To manage ZFS (Zettabyte File System), we need to install the necessary tools. This includes zfs and zpool .

sudo apt install zfsutils-linux -y

This command installs the zfsutils-linux package, which provides the tools necessary for managing ZFS file systems.

lxc profile edit default

This will open the default profile in your default editor. Update the root device to look like this:

Initial Setup for Ubuntu Cloud Instance with ZFS and MicroK8s

Installing ZFS Tools

Setup Profile for Creating Containers

This is a YAML representation of the profile.
Any line starting with a '# will be ignored.
###
A profile consists of a set of configuration items followed by a set of
devices.
###
An example would look like:
name: onenic
config:
raw.lxc: lxc.aa_profile=unconfined
devices:
eth0:
nictype: bridged
parent: lxdbr0
type: nic
###
Note that the name is shown but cannot be changed

name: default
description: Default LXD profile
config: {}
devices:
 eth0:
 name: eth0
 network: lxdbr0
 type: nic
 root:
 path: /
 pool: kube_zfs
 type: disk
used_by: []

To create a container optimized for MicroK8s, a lightweight Kubernetes distribution, we need to create a custom profile.

lxc profile create microk8s_profile

This command creates a new LXC profile named microk8s_profile .

Next, we download a pre-configured profile from the MicroK8s repository:

wget https://raw.githubusercontent.com/ubuntu/microk8s/master/tests/lxc/microk8s-zfs.profile -O microk8s.profile

This command downloads the microk8s-zfs.profile file from the MicroK8s repository and saves it as microk8s.profile locally.

We then apply the downloaded profile to our microk8s_profile :

cat microk8s.profile | lxc profile edit microk8s_profile

This command pipes the contents of the microk8s.profile file to the lxc profile edit command, which applies the changes to the microk8s_profile .

lxc profile edit microk8s_profile

Now that we have our custom profile, we can create a new container optimized for MicroK8s:

lxc launch -p default -p microk8s_profile ubuntu:20.04 microk8scontainer

Let's break down this command:

lxc launch : Creates a new container from a specified image.
-p default : Specifies the default profile to use for the container.
-p microk8s_profile : Specifies the additional microk8s_profile profile to use for the container.
ubuntu:20.04 : Specifies the Ubuntu 20.04 image to use for the container.
microk8scontainer : Specifies the name of the container.

In summary, this command creates a new container named microk8scontainer from the Ubuntu 20.04 image, using both the default and microk8s_profile

Creating a Container with MicroK8s

profiles. The microk8s_profile likely configures the container to run MicroK8s, allowing you to have a Kubernetes environment up and running quickly.

Docker Install

In this section, we'll cover the setup of MicroK8s, a lightweight, easy-to-use Kubernetes distribution. MicroK8s is perfect for development, testing, and CI/CD pipelines.

Note when we get to the metallb a range of IPs are required. To select a range of IPs check the ip of the current container and then find a range of 10 IPs above the
current. For instance if the IP is: 10.220.44.112 you could select 10.220.44.115-10.220.44.115.

When setting up MetalLB, you need to specify a range of IP addresses that can be used to assign IP addresses to your Kubernetes services. To determine what range you
can specify, you'll need to consider a few factors:

1. Subnet: Identify the subnet that your LXC container's IP address (10.196.148.157) belongs to. You can use the ip addr show command to find the subnet mask:
ip addr show eth0 Look for the inet line, which should display the IP address, subnet mask, and other information. For example:
inet 10.196.148.157/24 brd 10.196.148.255 scope global eth0 In this example, the subnet mask is /24 , which means the subnet has 256

available IP addresses (2^8).

2. Available IP range: Determine the available IP range within the subnet that is not already in use by other devices or services. You can use tools like nmap or
arp-scan to scan the subnet and identify available IP addresses.

For example, if the subnet is 10.196.148.0/24 , you might find that IP addresses 10.196.148.1 to 10.196.148.100 are already in use. In this case, you
could specify a range like 10.196.148.101-10.196.148.150 for MetalLB.

1. Size of the range: Decide on the size of the IP range you want to allocate to MetalLB. A smaller range (e.g., 10-20 IP addresses) might be sufficient for a small
cluster, while a larger range (e.g., 50-100 IP addresses) might be needed for a larger cluster.

Considering these factors, you could specify a range like 10.196.148.101-10.196.148.120 for MetalLB. This range is within the same subnet as your LXC
container's IP address, and it's small enough to avoid conflicts with other devices or services on the subnet.

Remember to update your MetalLB configuration to reflect the chosen IP range.

Master 10.196.148.157 10.196.148.101-10.196.148.120
Worker1 10.196.148.239 10.196.148.125-10.196.148.135
Worker2 10.196.148.155 10.196.148.140-10.196.148.150

microk8s_setup.sh

Docker Install?

We are switching from manual to UI for creating the containers --- New Text Required

Installing MicroK8s inside the Container

Setting up the LXD Container

Microk8s Setup

Important note before installation

Checking the subnetwork of your container for IP Range

Microk8s Setup

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04

#!/bin/zsh

systemctl enable iscsid
swapoff -a

apt install -y zfsutils-linux

snap install microk8s --classic
microk8s enable community
microk8s enable rbac
microk8s enable openebs
microk8s enable metallb

microk8srestartprotection.sh

#!/bin/zsh

cat > /etc/rc.local <<EOF
#!/bin/bash
apparmor_parser --replace /var/lib/snapd/apparmor/profiles/snap.microk8s.*
exit 0
EOF

chmod +x /etc/rc.local

This script does the following:

Enables the iscsid service to start on boot using systemctl enable

Creates a new /etc/rc.local file with a script that:

Parses the AppArmor profiles for MicroK8s using apparmor_parser --replace

Exits with a success code using exit 0

Makes the /etc/rc.local file executable using chmod +x

This script sets up restart protection for MicroK8s using AppArmor, ensuring that MicroK8s continues to run even after a reboot.

By running these two scripts, we've set up MicroK8s on our Ubuntu instance, including enabling various features and configuring restart protection with AppArmor.

The new method requires additional addons enabled:

Intersting supporting article for Ingress

microk8s enable ingress

Restart Protection with AppArmor

New CloudFlare

Deploy the Ingress Service

https://adrin-mukherjee.medium.com/demystifying-kubernetes-ingress-b725f9f52ebc

apiVersion: v1
kind: Service
metadata:
 name: ingress
 namespace: ingress
spec:
 selector:
 name: nginx-ingress-microk8s
 type: LoadBalancer
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 80
 - name: https
 protocol: TCP
 port: 443
 targetPort: 443

You will see the ip set for external (thanks to MetalLB as there service is of type LoadBalancer)

Ingress definition

piVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: web-ingress
spec:
 ingressClassName: nginx
 rules:
 - host: api.davidsells.today
 http:
 paths:
 - path: /users
 pathType: Prefix
 backend:
 service:
 name: user-service
 port:
 number: 8081
 - path: /products
 pathType: Prefix
 backend:
 service:
 name: item-service
 port:
 number: 9091
 - path: /ng
 pathType: Prefix
 backend:
 service:
 name: ng-service
 port:
 number: 9999

Deploy.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: metallb-test
 namespace: lb-test
spec:
 replicas: 2
 selector:
 matchLabels:
 app: metallb-test
 template:
 metadata:
 labels:
 app: metallb-test
 spec:
 containers:
 - name: metallb-test
 image: nginx:latest
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 creationTimestamp: null
 name: ng-service
 namespace: lb-test
 labels:
 app: ng-service
spec:
 ports:
 - port: 9999
 protocol: TCP
 targetPort: 80
 selector:
 app: metallb-test
 type: ClusterIP
status:
 loadBalancer: {}

Install Cloudflared

In this section, we'll cover the installation of K9s, a popular Kubernetes CLI tool, on a fresh Ubuntu cloud instance.

#!/bin/zsh

Step 1: Save the current Kubernetes configuration to a file
ku config view --raw > ~/.kube/config

Step 2: Set the correct permissions for the config file
chmod 600 ~/.kube/config

Step 3: Download the K9s installation package
wget https://github.com/derailed/k9s/releases/download/v0.32.5/k9s_linux_amd64.deb

Step 4: Change the ownership of the downloaded package to root
chown root:root k9s_linux_amd64.deb

Step 5: Install K9s using the downloaded package
apt install -y ./k9s_linux_amd64.deb

Let's break down what each step does:

Step 1: ku config view --raw > ~/.kube/config - This command saves the current Kubernetes configuration to a file named ~/.kube/config . This file is
used by K9s to connect to your Kubernetes cluster.

Step 2: chmod 600 ~/.kube/config - This command sets the permissions for the ~/.kube/config file to rw------- , which means the owner has read
and write permissions, but the group and others have no access. This is a security best practice to prevent unauthorized access to your Kubernetes configuration.

Step 3: wget https://github.com/derailed/k9s/releases/download/v0.32.5/k9s_linux_amd64.deb - This command downloads the K9s installation
package from the official GitHub repository. The version used here is v0.32.5 , but you can adjust this to the latest version available.

wget -q https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb && sudo dpkg -i cloudflared-linux-amd64.deb

cloudflared tunnel login

cloudflared tunnel create kubernetes

vi config.yaml

tunnel: 9a27e9b6-208c-460e-ba6e-9182c2437fb1

credentials-file: /root/.cloudflared/9a27e9b6-208c-460e-ba6e-9182c2437fb1.json

ingress:

- hostname: kubernetes.davidsells.today

 service: http://10.203.176.200:80

- service: http_status:404

cloudflared tunnel route dns kubernetes kubernetes.davidsells.today

cloudflared tunnel run kubernetes

curl http://10.203.176.200:80

vi config.yaml

cloudflared tunnel run kubernetes

cloudflared service install

systemctl start cloudflared

K9 Installation

k9s_setup.sh

Step 4: chown root:root k9s_linux_amd64.deb - This command changes the ownership of the downloaded package to the root user and group. This is
necessary because the apt package manager requires root privileges to install packages.

Step 5: apt install -y ./k9s_linux_amd64.deb - This command installs K9s using the downloaded package. The -y flag assumes "yes" to all prompts,
allowing the installation to proceed without user intervention.

After running this script, you should have K9s installed on your Ubuntu cloud instance, and you can start using it to manage your Kubernetes cluster.

microk8s enable openebs

ku get sc

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
openebs-device openebs.io/local Delete WaitForFirstConsumer false 76s
openebs-hostpath openebs.io/local Delete WaitForFirstConsumer false 76s
openebs-jiva-csi-default jiva.csi.openebs.io Delete Immediate true 76s

In this section, we will install the OpenEBS ZFS operator on our Ubuntu cloud instance. OpenEBS is a popular open-source storage solution for Kubernetes, and the ZFS
operator provides a scalable and performant storage solution for our cluster. OpenEBS

#!/bin/zsh
microk8s kubectl apply -f https://openebs.github.io/charts/zfs-operator.yaml

This script applies the OpenEBS ZFS operator YAML file to our Kubernetes cluster using microk8s kubectl . The apply command is used to create or update
resources in our cluster based on the YAML file. The YAML file is fetched from the OpenEBS GitHub repository.

Note: microk8s is a lightweight, single-package distribution of Kubernetes that is easy to install and use. It provides a convenient way to run Kubernetes on a single
machine.

These two commands set the default storage class for our cluster. We want to make the openebs-zfspv storage class the default, so we patch the
microk8s-hostpath storage class to set is-default-class to false , and then patch the openebs-zfspv storage class to set is-default-class

to true .

Note: In Kubernetes, a storage class is a way to define a class of storage that can be used to provision volumes. By setting a default storage class, we can simplify the
process of provisioning volumes for our applications.

By running these scripts, we have successfully installed the OpenEBS ZFS operator and set the default storage class to openebs-zfspv . This provides a scalable and
performant storage solution for our Kubernetes cluster.

We need to allocate storage space for our Kubernetes cluster. We'll create a ZFS pool and a dataset named kube_zfs/child with a quota of 10GB.

Script: zfs create -o quota=10G kube_zfs/child

What's happening:

zfs create creates a new ZFS dataset or filesystem.
-o is an option to specify additional properties for the dataset.
quota=10G sets a quota of 10GB for the dataset, limiting the amount of space it can occupy.
kube_zfs/child is the name of the dataset, which will be a child of the root data pool.

microk8s kubectl patch storageclass microk8s-hostpath -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'
microk8s kubectl patch storageclass openebs-zfspv -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

OpenEBS ZFS Operator Installation

Installing the OpenEBS ZFS Operator

Setting the Default Storage Class

Actually the following may not be required if openebs-jiva-csi is already default. Still you can define this in the definition of the storage
class.

Create ZFS Pool for Storage Class

https://openebs.io/blog/openebs-storageclasses-for-zfs-localpv

Next, we'll define a storage class YAML file that will be used to provision dynamic volumes for our Kubernetes cluster.

Script:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: openebs-zfspv
parameters:
 recordsize: "4k"
 compression: "off"
 dedup: "off"
 fstype: "zfs"
 poolname: "kube_zfs/child"
provisioner: zfs.csi.openebs.io

What's happening:

This YAML file defines a storage class named openebs-zfspv .
apiVersion and kind specify that this is a storage class definition.
metadata section provides metadata for the storage class.
parameters section specifies additional properties for the storage class:

recordsize : sets the record size to 4KB.
compression : disables compression.
dedup : disables deduplication.
fstype : specifies that the filesystem type is ZFS.
poolname : references the ZFS pool created earlier (kube_zfs/child).

provisioner : specifies the provisioner to use for dynamic volume provisioning (zfs.csi.openebs.io).

By creating this storage class, we'll be able to dynamically provision ZFS-based persistent volumes for our Kubernetes cluster. In the next post, we'll cover the deployment
of the Kubernetes cluster itself.

In this section, we'll cover the initial setup required to deploy persistent storage in a new cloud instance of Ubuntu using Kubernetes.

A Persistent Volume Claim (PVC) is a request for storage resources in a Kubernetes cluster. It's a way to request a certain amount of storage from the cluster, and the
cluster will dynamically provision the storage based on the request.

Here's the YAML script to create a PVC:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: my-pv-claim
 namespace: nginx
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Let's break down what's happening in this script:

kind: PersistentVolumeClaim : This specifies that we're creating a Persistent Volume Claim.
apiVersion: v1 : This specifies the API version of the Kubernetes API.
metadata : This section provides metadata about the PVC, such as its name and namespace.
name: my-pv-claim : This is the name of the PVC.
namespace: nginx : This specifies the namespace where the PVC will be created.
spec : This section specifies the desired state of the PVC.

Storage Class

Setting up Persistent Storage in Kubernetes

Creating a Persistent Volume Claim (PVC)

accessModes : This specifies the access mode for the PVC. In this case, we're using ReadWriteOnce , which means the volume can be mounted as read-write
by a single node.
resources : This section specifies the resources required by the PVC.
requests : This specifies the amount of storage requested. In this case, we're requesting 1Gi (1 gigabyte) of storage.

By creating this PVC, we're requesting 1Gi of storage from the cluster, and the cluster will dynamically provision the storage based on this request. This storage will be
used by our application to persist data even if the pod is restarted or deleted.

In the next section, we'll cover how to create a Persistent Volume (PV) to fulfill this PVC request.

In this section, we will create a Kubernetes deployment that uses a Persistent Volume Claim (PVC) to store data. This is a crucial step in ensuring that our data is
persisted even if our pods are restarted or deleted.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-pv-deployment
 namespace: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 volumes:
 - name: my-pv-storage
 persistentVolumeClaim:
 claimName: my-pv-claim
 containers:
 - name: nginx-pv-container
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: my-pv-storage

Let's break down this YAML file:

We define a Deployment named nginx-pv-deployment in the nginx namespace.
We specify that we want one replica of this deployment.
We define a selector that matches pods with the label app: nginx .
We define a template that specifies the pod's metadata and spec.
In the spec , we define a volume named my-pv-storage that uses a Persistent Volume Claim (PVC) named my-pv-claim .
We define a container named nginx-pv-container that uses the nginx image and exposes port 80.
We mount the my-pv-storage volume to the container at the path /usr/share/nginx/html .

What's happening here?

We are creating a deployment that uses a PVC to store data. This ensures that our data is persisted even if our pods are restarted or deleted.
We are using a single replica of this deployment, which means that only one pod will be created.
We are using the nginx image and exposing port 80, which means that our pod will serve a web server.

In this section, we will create a Kubernetes deployment that uses MetalLB to expose a LoadBalancer service. This is a crucial step in exposing our application to the
outside world.

Nginx Deployment - PVC Test

Deployment YAML

Nginx Deployment - MetalLB Test

kubectl create namespace lb-test

We create a new namespace named lb-test using the kubectl command.

apiVersion: v1
kind: Namespace
metadata:
 name: lb-test

apiVersion: apps/v1
kind: Deployment
metadata:
 name: metallb-test
 namespace: lb-test
spec:
 replicas: 2
 selector:
 matchLabels:
 app: metallb-test
 template:
 metadata:
 labels:
 app: metallb-test
 spec:
 containers:
 - name: metallb-test
 image: nginx:latest
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: metallb-test
 namespace: lb-test
spec:
 selector:
 app: metallb-test
 ports:
 - name: http
 port: 80
 targetPort: 80
 type: LoadBalancer

Let's break down this YAML file:

We define a Namespace named lb-test .
We define a Deployment named metallb-test in the lb-test namespace.
We specify that we want two replicas of this deployment.
We define a selector that matches pods with the label app: metallb-test .
We define a template that specifies the pod's metadata and spec.
In the spec , we define a container named metallb-test that uses the nginx:latest image and exposes port 80.
We define a Service named metallb-test that selects pods with the label app: metallb-test .
We specify that the Service should expose port 80 and use the LoadBalancer type.

What's happening here?

We are creating a deployment that uses MetalLB to expose a LoadBalancer service.
We are creating two replicas of this deployment, which means that two pods will be created.
We are using the nginx:latest image and exposing port 80, which means that our pods will serve a web server.
We are creating a Service that selects pods with the label app: metallb-test and exposes port 80 using the LoadBalancer type.
MetalLB will automatically assign an external IP and port to the Service, allowing us to access our application from outside the cluster.

Create Namespace

Deployment YAML

In this blog post, we'll go through the initial setup required to deploy Ollama and Open-WebUI on a new cloud instance of Ubuntu using Kubernetes.

The first step is to create a ZFS pool for the llm storage class. ZFS (Zettabyte File System) is a file system designed for high-capacity storage and provides features
like data compression, deduplication, and snapshots.

zfs create -o quota=10G kube_zfs/llm

This command creates a new ZFS pool named kube_zfs/llm with a quota of 10GB.

Next, we define a storage class for the llm pool. A storage class is a way to define a class of storage that can be used to provision persistent volumes.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: llm-zfspv
parameters:
 recordsize: "4k"
 compression: "off"
 dedup: "off"
 fstype: "zfs"
 poolname: "kube_zfs/llm"
provisioner: zfs.csi.openebs.io

This storage class is named llm-zfspv and uses the zfs.csi.openebs.io provisioner to create persistent volumes. The parameters section defines the
record size, compression, deduplication, and file system type for the storage class.

We need to update the default storage class annotations to ensure that our new storage class is used by default.

These commands update the annotations for the openebs-zfspv and llm-zfspv storage classes.

Next, we create a new namespace for our deployments.

kubectl create namespace llm-ns

This command creates a new namespace named llm-ns .

We define a persistent volume claim (PVC) to request storage resources for our deployments.

microk8s kubectl patch storageclass openebs-zfspv -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'
microk8s kubectl patch storageclass llm-zfspv -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

Setting up Ollama and Open-WebUI on Ubuntu with Kubernetes

Create ZFS Pool for llm Storage Class

Storage Class - llm

Re-align ZFS Pools

Create Namespace

Persistent Volume Claim - llm

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: llm-pv-claim
 namespace: llm-ns
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

This PVC is named llm-pv-claim and requests 5Gi of storage with read-write access.

Now, we define a deployment for Ollama.

Ollama Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ollama
 namespace: llm-ns
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ollama
 template:
 metadata:
 labels:
 app: ollama
 spec:
 containers:
 - name: ollama
 image: ollama/ollama:latest
 ports:
 - containerPort: 11434
 volumeMounts:
 - name: ollama-data
 mountPath: /root/.ollama
 volumes:
 - name: ollama-data
 persistentVolumeClaim:
 claimName: new-ollama-pvc
 priorityClassName: system-node-critical
 strategy:
 type: Recreate

apiVersion: v1
kind: Service
metadata:
 name: ollama-service
 namespace: llm-ns
spec:
 selector:
 app: ollama
 ports:
 - name: http
 port: 11434
 targetPort: 11434
 protocol: TCP
 type: ClusterIP

apiVersion: v1
kind: Service
metadata:
 name: ollama-service-lb
 namespace: llm-ns
spec:
 selector:
 app: ollama
 ports:
 - name: http
 port: 11434
 targetPort: 11434
 protocol: TCP
 type: LoadBalancer

This deployment defines a single replica of the Ollama container, which uses a persistent volume claim named new-ollama-pvc . We also define two services:
ollama-service and ollama-service-lb , which expose the Ollama container on port 11434.

PVC for Open-WebUI

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: owui-pvc-claim
 namespace: llm-ns
spec:
 storageClassName: llm-zfspv
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

Finally, we define a deployment for Open-WebUI.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: open-webui
 namespace: llm-ns
spec:
 replicas: 1
 selector:
 matchLabels:
 app: open-webui
 template:
 metadata:
 labels:
 app: open-webui
 spec:
 containers:
 - name: open-webui
 image: ghcr.io/open-webui/open-webui:main
 ports:
 - containerPort: 8080
 env:
 - name: OLLAMA_BASE_URL
 value: http://ollama-service.default.svc.cluster.local:11434
 volumeMounts:
 - name: open-webui-data
 mountPath: /app/backend/data
 volumes:
 - name: open-webui-data
 persistentVolumeClaim:
 claimName: llm-pvc-claim

apiVersion: v1
kind: Service
metadata:
 name: open-webui-lb
 namespace: llm-ns
spec:
 selector:
 app: open-webui
 ports:
 - name: http
 port: 3000
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

This deployment defines a single replica of the Open-WebUI container, which uses a persistent volume claim named llm-pvc-claim . We also define a service named
open-webui-lb , which exposes the Open-WebUI container on port 3000.

That's it! With these scripts, we've set up a new ZFS pool, storage class, namespace, and deployments for Ollama and Open-WebUI using Kubernetes.

Deploy Open-WebUI

In this blog post, we will go through the initial setup required to deploy LiteLLM, an application that integrates with OpenWebUI to utilize external Large Language Models
(LLMs) like GROQ.

The first step is to create a configuration file config.yaml that defines the models hosted on GROQ's service. This file contains three models: llama3-70b ,
llama3-8b , and llama3.1-8b-instant .

model_list:
 - model_name: 'llama3-70b'
 litellm_params:
 model: 'groq/llama3-70b-8192'
 api_key: gsk_l1Qxxx
 - model_name: 'llama3-8b'
 litellm_params:
 model: 'groq/llama3-8b-8192'
 api_key: gsk_l1Qxxx
 - model_name: 'llama3.1-8b-instant'
 litellm_params:
 model: 'groq/llama3.1-8b-instant'
 api_key: gsk_l1Qxxx

This configuration file is used to create a ConfigMap, a Kubernetes object that stores configuration data as key-value pairs.

To create a ConfigMap, we use the following command: kubectl create configmap litellm-config --from-file=config.yaml -n llm-ns This
command creates a ConfigMap named litellm-config in the llm-ns namespace, using the config.yaml file as the source of the configuration data.

Next, we define a Deployment YAML file deploy.yaml that deploys LiteLLM and a Service to make it available to other pods.

Setting up LiteLLM on a New Ubuntu Cloud Instance

Configuring LiteLLM

Creating a ConfigMap

Deploying LiteLLM

apiVersion: apps/v1
kind: Deployment
metadata:
 name: litellm-deployment
 namespace: llm-ns
spec:
 replicas: 1
 selector:
 matchLabels:
 app: litellm
 template:
 metadata:
 labels:
 app: litellm
 spec:
 containers:
 - name: litellm
 image: ghcr.io/berriai/litellm:main-latest
 ports:
 - containerPort: 4000
 env:
 - name: LITELLM_MASTER_KEY
 value: your_secret_key_xx
 - name: GROQ_API_KEY
 valueFrom:
 secretKeyRef:
 name: groq-api-key
 key: GROQ_API_KEY
 volumeMounts:
 - name: config-volume
 mountPath: /app/config.yaml
 subPath: config.yaml
 command: ["/usr/local/bin/litellm"]
 args: ["--config", "/app/config.yaml", "--port", "4000"]
 volumes:
 - name: config-volume
 configMap:
 name: litellm-config

apiVersion: v1
kind: Service
metadata:
 name: litellm-service
 namespace: llm-ns
spec:
 selector:
 app: litellm
 ports:
 - name: http
 port: 4000
 targetPort: 4000
 type: ClusterIP

This Deployment YAML file defines:

A Deployment named litellm-deployment in the llm-ns namespace, with one replica.
A container named litellm using the ghcr.io/berriai/litellm:main-latest image.
Environment variables LITELLM_MASTER_KEY and GROQ_API_KEY are set.
A volume mount is created to mount the ConfigMap litellm-config as a file at /app/config.yaml .
The LiteLLM application is started with the command "/usr/local/bin/litellm" and arguments
["--config", "/app/config.yaml", "--port", "4000"] .

A Service named litellm-service is defined to expose the LiteLLM application on port 4000.

To connect to LiteLLM from OpenWebUI, use the URL http://litellm-service:4000 .

That's it! With these steps, we have successfully set up LiteLLM on a new Ubuntu cloud instance.

Connecting to LiteLLM

