
Update the apt repository and install Git.

apt update

Originally logged in as root create a user. We'll user the user david for example:

adduser david

The command will propmpt the user for their full name, phone numbers, etc and a password

Additionally, the new user will require sudo priviledges (root priviledges).

usermod -aG sudo david

Now let's su into that user continue our installations.

su - david

sudo apt update
sudo apt install git -y

To setup up ssh login

Part One: Setting Up the Host

Initial update of apt

Create a new User

Setup SSH login

Get Repository With DevOps Scripts

(these commands are executed in the 'david' user account)

Get on with Git Work
git clone git@github.com:davidsells/setup_llm.git

If you'd like to maintain this is a private repository the following steps are required to setup
access to git.

1. create ssh key on machine requiring access to Git

execute the following. You may enter <cr> for all questions
ssh-keygen -t rsa -b 4096 -C "david@persistentdesigns.com"

eval "$(ssh-agent -s)"

ssh-add ~/.ssh/id_rsa

1. copy the contents of ~/.ssh/id_rsa

2. Go to your github account

1. go to settings
2. open SSH and GPG Keys
3. Press the "New SSH Key" button and follow instructions where you will paste in the

copied key

3. Validate the connection

ssh -T git@github.com

Response:

In this section, we'll cover the steps to set up LXD on a fresh Ubuntu cloud instance. LXD is a
containerization platform that provides a secure and scalable environment with minimal

Hi davidsells! You've successfully authenticated, but GitHub does not provide shell access.

Private Git Repository Access (Optional)

Setting up LXD on Ubuntu

overhead.

LXD provides a layer of security and separation of devops concerns, which is essential for our
Kubernetes deployment. It allows us to manage our workloads with ease and configure them to
suit our use case via a user-friendly web interface.

To install LXD, we'll use the snap package manager, which is the recommended way to install
LXD on Ubuntu.

sudo snap install lxd

This command will download and install the LXD snap package.

chmod -a -G lxd david

Logout and log back in to apply the new group to your session.

Once LXD is installed, we need to initialize it using the following command:

lxd init

This command will prompt us to configure LXD. We'll walk through the options and explain what
each one does:

During the initialization process, we'll be asked a series of questions to configure LXD. Here's
what each option does:

LXD clustering: This option enables LXD clustering, which allows multiple LXD servers to
work together as a single cluster. For our purposes, we can leave this set to the default

Why LXD?

Installing LXD

Add User 'david' to the LXD group

Initializing LXD

LXD Configuration Options

value of no .
Storage pool: We'll configure a new storage pool, which is where LXD will store its data.
We'll name this pool kube_zfs .
Storage backend: We'll use the ZFS storage backend, which provides a scalable and
reliable storage solution.
Create a new ZFS pool: We'll create a new ZFS pool, which will be used to store our data.
Use an existing empty block device: We won't use an existing block device, but instead
create a new one.
Size of the new loop device: We'll allocate 100GiB of storage space from the current drive
using a loop device. Note that you may want to adjust this value depending on your specific
use case.
MAAS server: We won't connect to a MAAS (Metal as a Service) server, so we'll leave this
set to no .
Create a new local network bridge: We'll create a new local network bridge, which will
allow our LXD containers to communicate with each other.
Bridge name: We'll name our bridge lxdbr0 , which is the default value.
IPv4 and IPv6 addresses: We'll use automatic IP address assignment for both IPv4 and
IPv6.
Make LXD server available over the network: We won't make the LXD server available
over the network, so we'll leave this set to no .
Update stale cached images: We'll enable automatic updates for stale cached images.

Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]: kube_zfs
Name of the storage backend to use (zfs, btrfs, ceph, dir, lvm, powerflex) [default=zfs]:
Create a new ZFS pool? (yes/no) [default=yes]:
Would you like to use an existing empty block device (e.g. a disk or partition)? (yes/no) [default=no]:
Size in GiB of the new loop device (1GiB minimum) [default=30GiB]: 400GiB
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Would you like the LXD server to be available over the network? (yes/no) [default=no]: yes
Address to bind LXD to (not including port) [default=all]: 23.29.118.75
Port to bind LXD to [default=8443]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]:
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:

https://www.youtube.com/watch?v=5bhipSCgck8

sudo snap install lxd
lxc --version
5.21.2 LTS

Enable LXD UI

sudo snap set lxd ui.enable=true
sudo snap restart --reload lxd
sudo lxc config set core.https_address 104.225.219.54:8443

Note: in the setup of lxd that the option to make lxd available over the network was set to true
and the port to bind to was set to 8442

Using Firefox go to the url of the host at port 8443:

https://104.225.219.54:8443/

Accept responsibility for the warnings. Accept the certificate exchange.

Ultimately you should arrive at the following page:

LXD-UI Installation

Create the certificate. Note that you do not need to provide a password.

Download the file to you local machine. Then you'll need to upload it to your cloud instance and
issue the following command:

lxc config trust add lxd-ui-104.225.219.54.crt

Followed by getting the pfx file for your browser type as shown in the web page:

Currently we have only the default profile for creating images.

The default contains some basic profile information. We will be adding another profile from the
CLI that contains configuration for the Kubernetes installations.

lxc profile edit default

This will open the default profile in your default editor. Update the root device to look like this:

To create a container optimized for MicroK8s, a lightweight Kubernetes distribution, we need to
create a custom profile.

lxc profile create microk8s_profile

This command creates a new LXC profile named microk8s_profile .

This is a YAML representation of the profile.
Any line starting with a '# will be ignored.
###
A profile consists of a set of configuration items followed by a set of
devices.
###
An example would look like:
name: onenic
config:
raw.lxc: lxc.aa_profile=unconfined
devices:
eth0:
nictype: bridged
parent: lxdbr0
type: nic
###
Note that the name is shown but cannot be changed

name: default
description: Default LXD profile
config: {}
devices:
 eth0:
 name: eth0
 network: lxdbr0
 type: nic
 root:
 path: /
 pool: kube_zfs
 type: disk
used_by: []

Next, we download a pre-configured profile from the MicroK8s repository:

This command downloads the microk8s-zfs.profile file from the MicroK8s repository
and saves it as microk8s.profile locally.

We then apply the downloaded profile to our microk8s_profile :

cat microk8s.profile | lxc profile edit microk8s_profile

This command pipes the contents of the microk8s.profile file to the
lxc profile edit command, which applies the changes to the microk8s_profile .

You can view contents from the CLI as follows:

lxc profile edit microk8s_profile

Additionally, you can view it from the LXD-UI. The UI provides an intuitive view of the profile. We
will not be going into this here but I'd encourge taking a look around at the parameters that you
can constrain with respect to memory and storage.

The project requires three lxc containers. One will contain the control-plane and the other two
containers will be worker containers.

You have the option of creating the container via the command line or using the UI. We'll
describe the cli side and leave it to the reader to use the UI.

We use the lxc profiles to launch a lxc container:

lxc launch -p default -p microk8s_profile ubuntu:20.04 control

Note: that there are two profiles used. In the UI two profiles will need to be selected.

wget https://raw.githubusercontent.com/ubuntu/microk8s/master/tests/lxc/microk8s-zfs.profile -O microk8s.profile

Part Two: Setting Up the Containers and
Kuberentes

Creating a LXC Container for the MicroK8s

Let's break down this command:

lxc launch : Creates a new container from a specified image.
-p default : Specifies the default profile to use for the container.
-p microk8s_profile : Specifies the additional microk8s_profile profile to use

for the container.
ubuntu:20.04 : Specifies the Ubuntu 20.04 image to use for the container.
microk8scontainer : Specifies the name of the container.

In summary, this command creates a new container named control from the Ubuntu 20.04
image, using both the default and microk8s_profile profiles. The microk8s_profile

likely configures the container to run MicroK8s, allowing you to have a Kubernetes environment
up and running quickly.

Using the same command create an instance named 'worker1' and 'worker2'.

Should look like this when they are all launched.

Alternative from the command line:

lxc launch -p default -p microk8s_profile ubuntu:20.04 worker1
lxc launch -p default -p microk8s_profile ubuntu:20.04 worker2

lxc ls

lxc exec control -- sudo snap install microk8s --classic

prep_container.sh

└─(00:15:00)──> lxc ls ──(Sun,Dec22)─┘
+---------+---------+---------------------+---+-----------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+---------+---------+---------------------+---+-----------+-----------+
| control | RUNNING | 10.146.32.64 (eth0) | fd42:52d3:bb11:e65e:216:3eff:fef6:a246 (eth0) | CONTAINER | 0 |
+---------+---------+---------------------+---+-----------+-----------+
| worker1 | STOPPED | | | CONTAINER | 0 |
+---------+---------+---------------------+---+-----------+-----------+
| worker2 | STOPPED | | | CONTAINER | 0 |
+---------+---------+---------------------+---+-----------+-----------+

install Microk8s on control

#!/bin/sh

systemctl enable iscsid
swapoff -a

apt install -y zfsutils-linux

lxc file push prep_container.sh control/tmp/
lxc exec control -- /bin/bash /tmp/prep_container.sh

containerScriptLauncher.sh

#!/bin/sh

Set the script file and container name from command-line arguments
CONTAINER_NAME=$1
SCRIPT_FILE=$2

Push the script file to the container
lxc file push "$SCRIPT_FILE" "$CONTAINER_NAME"/tmp/

Execute the script inside the container
lxc exec "$CONTAINER_NAME" -- /bin/bash /tmp/"$SCRIPT_FILE"

To simplify things we can use the following utility script to deploy the script to a container more
efficiently.

containerScriptLauncher.sh

./containerScriptLauncher.sh <container> <script>

i.e.

./containerScriptLauncher.sh control prep_container.sh

Enable required 'addons':

enables.sh

#/bin/sh
microk8s enable community
microk8s enable rbac
microk8s enable openebs

./containerScriptLauncher.sh control enables.sh

./containerScriptLauncher.sh worker1 enables.sh

./containerScriptLauncher.sh worker2 enables.sh

Now We need to add support for the ZFS files system with the OpenEBS ZFS operator. Before
we install the storage class are:

ku get sc

In this section, we will install the OpenEBS ZFS operator on our Ubuntu cloud instance.
OpenEBS is a popular open-source storage solution for Kubernetes, and the ZFS operator
provides a scalable and performant storage solution for our cluster. OpenEBS

This script applies the OpenEBS ZFS operator YAML file to our Kubernetes cluster using
microk8s kubectl . The apply command is used to create or update resources in our

cluster based on the YAML file. The YAML file is fetched from the OpenEBS GitHub repository.

Note: microk8s is a lightweight, single-package distribution of Kubernetes that is easy to
install and use. It provides a convenient way to run Kubernetes on a single machine.

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
openebs-device openebs.io/local Delete WaitForFirstConsumer false 22h
openebs-hostpath openebs.io/local Delete WaitForFirstConsumer false 22h
openebs-jiva-csi-default jiva.csi.openebs.io Delete Immediate true 22h

#!/bin/sh
lxc exec control -- microk8s kubectl apply -f https://openebs.github.io/charts/zfs-operator.yaml

./containerApplyYaml.sh control https://openebs.github.io/charts/zfs-operator.yaml

OpenEBS ZFS Operator Installation

Installing the OpenEBS ZFS Operator

https://openebs.io/blog/openebs-storageclasses-for-zfs-localpv

These two commands set the default storage class for our cluster. We want to make the
openebs-zfspv storage class the default, so we patch the microk8s-hostpath

storage class to set is-default-class to false , and then patch the
openebs-zfspv storage class to set is-default-class to true .

Note: In Kubernetes, a storage class is a way to define a class of storage that can be used to
provision volumes. By setting a default storage class, we can simplify the process of
provisioning volumes for our applications.

By running these scripts, we have successfully installed the OpenEBS ZFS operator and set the
default storage class to openebs-zfspv . This provides a scalable and performant storage
solution for our Kubernetes cluster.

MetalLB is a library that provides an external IPs for for the node or cluster. When using cloud
providers like AWS or Azure they provide loadbalancers for you. In this case we are using our
own. This is ofter referred to as a bare-metal setup.

Microk8s provides MetalLB as an add on that makes its addition easy. However, a IP range
needs to be given on enabling the addon.

To select a range of IPs check the ip of the current container and then find a range of 10 IPs
above the current. For instance if the IP is: 10.220.44.112 you could select 10.220.44.115-
10.220.44.115.

When setting up MetalLB, you need to specify a range of IP addresses that can be used to
assign IP addresses to your Kubernetes services. To determine what range you can specify,
you'll need to consider a few factors:

microk8s kubectl patch storageclass microk8s-hostpath -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'
microk8s kubectl patch storageclass openebs-zfspv -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

Setting the Default Storage Class

Actually the following may not be required if openebs-jiva-csi is already
default. Still you can define this in the definition of the storage class.

MetalLB setup (control container only)

Checking the subnetwork of your container for IP Range

1. Subnet: Identify the subnet that your LXC container's IP address (10.196.148.157) belongs
to. You can use the ip addr show command to find the subnet mask:
ip addr show eth0 Look for the inet line, which should display the IP address,

subnet mask, and other information. For example:
inet 10.196.148.157/24 brd 10.196.148.255 scope global eth0 In this

example, the subnet mask is /24 , which means the subnet has 256 available IP
addresses (2^8).

2. Available IP range: Determine the available IP range within the subnet that is not already
in use by other devices or services. You can use tools like nmap or arp-scan to scan
the subnet and identify available IP addresses.

For example, if the subnet is 10.196.148.0/24 , you might find that IP addresses
10.196.148.1 to 10.196.148.100 are already in use. In this case, you could specify a

range like 10.196.148.101-10.196.148.150 for MetalLB.

1. Size of the range: Decide on the size of the IP range you want to allocate to MetalLB. A
smaller range (e.g., 10-20 IP addresses) might be sufficient for a small cluster, while a
larger range (e.g., 50-100 IP addresses) might be needed for a larger cluster.

Considering these factors, you could specify a range like
10.196.148.101-10.196.148.120 for MetalLB. This range is within the same subnet as

your LXC container's IP address, and it's small enough to avoid conflicts with other devices or
services on the subnet.

Remember to update your MetalLB configuration to reflect the chosen IP range.

You can use the UI to find the range as show here:

Alternatively from the commandline:

lxc exec control -- ip addr show eth0

In the case shown in the diagram IP and subnet is:

10.146.32.64/24

IP Address: 10.146.32.64
Network Address: 10.146.32.0
Usable Host IP Range: 10.146.32.1 - 10.146.32.254
Broadcast Address: 10.146.32.255
Total Number of Hosts: 256
Number of Usable Hosts:254

The following four IP addresses are not usable or already have a special meaning:

We'll use the range 10.146.32.70-10.146.32.100. 30 IPs are sufficient for our needs.

Note also that MetalLB only needs to be installed on the node with the control plane.

10.146.32.0: The network address, which is not usable as a host address.
10.146.32.1: Often used as the default gateway or router address, although it's not a hard requirement.
10.146.32.64: The network address (in this specific case), which is not usable as a host address.
10.146.32.255: The broadcast address, which is used to send packets to all devices on the networ

microk8srestartprotection.sh

This script does the following:

Enables the iscsid service to start on boot using systemctl enable

Creates a new /etc/rc.local file with a script that:

Parses the AppArmor profiles for MicroK8s using apparmor_parser --replace

Exits with a success code using exit 0

Makes the /etc/rc.local file executable using chmod +x

lxc exec control -- microk8s enable metallb 1 ↵ ──(Sun,Dec22)─┘

Infer repository core for addon metallb
Enabling MetalLB
Enter each IP address range delimited by comma (e.g. '10.64.140.43-10.64.140.49,192.168.0.105-192.168.0.111'): 10.146.32.70-10.146.32.100
Applying Metallb manifest
customresourcedefinition.apiextensions.k8s.io/addresspools.metallb.io created
customresourcedefinition.apiextensions.k8s.io/bfdprofiles.metallb.io created
customresourcedefinition.apiextensions.k8s.io/bgpadvertisements.metallb.io created
customresourcedefinition.apiextensions.k8s.io/bgppeers.metallb.io created
:
Error from server (InternalError): error when creating "STDIN": Internal error occurred: failed calling webhook "ipaddresspoolvalidationwebhook.metallb.io": failed to call webhook: Post "https://webhook-service.metallb-system.svc:443/validate-metallb-io-v1beta1-ipaddresspool?timeout=10s": dial tcp 10.152.183.108:443: connect: connection refused
Error from server (InternalError): error when creating "STDIN": Internal error occurred: failed calling webhook "l2advertisementvalidationwebhook.metallb.io": failed to call webhook: Post "https://webhook-service.metallb-system.svc:443/validate-metallb-io-v1beta1-l2advertisement?timeout=10s": dial tcp 10.152.183.108:443: connect: connection refused
Failed to create default address pool, will retry
ipaddresspool.metallb.io/default-addresspool created
l2advertisement.metallb.io/default-advertise-all-pools created
MetalLB is enabled

#!/bin/sh

cat > /etc/rc.local <<EOF
#!/bin/bash
apparmor_parser --replace /var/lib/snapd/apparmor/profiles/snap.microk8s.*
exit 0
EOF

chmod +x /etc/rc.local

Restart Protection with AppArmor

This script sets up restart protection for MicroK8s using AppArmor, ensuring that MicroK8s
continues to run even after a reboot.

./containerScriptLauncher.sh control microk8s_restart_protection.sh

./containerScriptLauncher.sh worker1 microk8s_restart_protection.sh

./containerScriptLauncher.sh worker2 microk8s_restart_protection.sh

We are going to install k9s on the host to the lxc containers. First create a .kube directory off of
home and populate it with the data for connecting to the node:

We need to edit the ~/.kube/config file. It has identified the address of the kuberentes node as
127.0.0.1. We need to provide its IP address 10.146.32.64.

mkdir ~/.kube
Step 1: Save the current Kubernetes configuration to a file
lxc exec microk8s config view > ~/.kube/config

Step 2: Set the correct permissions for the config file
chmod 600 ~/.kube/config

Step 3: Download the K9s installation package
wget https://github.com/derailed/k9s/releases/download/v0.32.5/k9s_linux_amd64.deb

Step 4: Change the ownership of the downloaded package to root
sudo chown root:root k9s_linux_amd64.deb

Step 5: Install K9s using the downloaded package
sudo apt install -y ./k9s_linux_amd64.deb

Install k9s on Host

k9s is now ready to use.

This command is executed on the control node:

lxc exec control -- microk8s add-node

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUREekNDQWZlZ0F3SUJBZ0lVZnJROUZrT0tjZnRrMVh2RHgzbldYUkN4UndRd0RRWUpLb1pJaHZjTkFRRUwKQlFBd0Z6RVZNQk1HQTFVRUF3d01NVEF1TVRVeUxqRTRNeTR4TUI0WERUSTBNVEl5TWpBd05EQXpOMW9YRFRNMApNVEl5TURBd05EQXpOMW93RnpFVk1CTUdBMVVFQXd3TU1UQXVNVFV5TGpFNE15NHhVwS2FhVE9wOWNRdTVCUXlkVFNFRUMyK2JrRTk1d1k2cndKVi9wTFVQRlJKQnI2UmJ0WUF5Sk4KdStvQVJHa3F0Qm5yRmw0UENsR1dFaWovOXAxQXIyMWZjb2llZkZtVks1S1NMUFBOZWZNWktkSzVLQ0Q4MmF1UwowTmkyNUV2QUFBOWVvdWFUVUx0V0lkVWpjSlJBUnJqOVJPME1ENjhIL0VPcEZ0N0pjVGt2bFZOUFFCai9jM0VJClZxeEVoTG5EL04rcGpCR2tsQkZaK3o1K01sYzlicU5VQWQwMkZqTndTOVR0aDh4UnUvNGpmdTU4QTBUTndJbjAKd1N6ZlYrQzhaM0hUeEpvcFdhR1hxeW5ZbUE9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 server: https://10.146.32.64:16443
 name: microk8s-cluster
contexts:
- context:
 cluster: microk8s-cluster
 user: admin
 name: microk8s
current-context: microk8s
kind: Config
preferences: {}
users:
- name: admin
 user:
 client-certificate-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUN6RENDQWJTZ0F3SUJBZ0lVWUVCUW8zbGQ2Q1lkVXppUVNmYnhVN21SNDJrd0RRWUpLb1hNdHZYV0Y3Q1BscVB1WVh3VmFnb29pWXpFc25sNWZXUWo0RmNlNE5wN3piCmxDUmQra1BXcVFJREFRQUJNQTBHQ1NxR1NJYjNEUUVCQ3dVQUE0SUJBUUNuemNTVnlFdkF1RloxVmxBdTN0cFoKRHVKVyt2R3EzaUtUVWRIUERSTzk2MHBmVVhtcDYwZ0YvbUVLZGxBVUdGQ3phNUFEWUp2TStoYkQzQTFNTC9LKwpFYU00NFhlY0hpbjdoZVkrMlloQWlwc3Y4amJGZE9vTTN

Join Worker Nodes to the Control Plane

It returns the information required to join nodes to create the cluster of nodes:

We will use the worker flag and join worker1:

It returns:

We repeat this process to add worker2 to the cluster.

k9s should now see the nodes as shown below:

From the node you wish to join to this cluster, run the following:
microk8s join 10.146.32.64:25000/24d8e83fcfa33ed2ef7c396c83908084/2a9fa5a831a6

Use the '--worker' flag to join a node as a worker not running the control plane, eg:
microk8s join 10.146.32.64:25000/24d8e83fcfa33ed2ef7c396c83908084/2a9fa5a831a6 --worker

If the node you are adding is not reachable through the default interface you can use one of the following:
microk8s join 10.146.32.64:25000/24d8e83fcfa33ed2ef7c396c83908084/2a9fa5a831a6
microk8s join fd42:52d3:bb11:e65e:216:3eff:fef6:a246:25000/24d8e83fcfa33ed2ef7c396c83908084/2a9fa5a831a6

lxc exec worker1 -- microk8s join 10.146.32.64:25000/24d8e83fcfa33ed2ef7c396c83908084/2a9fa5a831a6 --worker

Contacting cluster at 10.146.32.64

The node has joined the cluster and will appear in the nodes list in a few seconds.

This worker node gets automatically configured with the API server endpoints.
If the API servers are behind a loadbalancer please set the '--refresh-interval' to '0s' in:
 /var/snap/microk8s/current/args/apiserver-proxy
and replace the API server endpoints with the one provided by the loadbalancer in:
 /var/snap/microk8s/current/args/traefik/provider.yaml

Successfully joined the cluster.

Part Three: Test Deployments

In this section we are going to: 1. deploy a simple application Nginx. The purpose is to use
MetalLB to expose the IP. We will take this a step further and make the Nginx service available
to the Internet through CloudFlare. 2. Next we will deploy an application that requires Disk
storage. We will set this up and view the elements created and review the ZFS datasets.

Notes: We have deployed, but not documented, the nginx deployment. We might do this and
who the service with its external IP. Then we can delete the deployment and add the ingress
addon.

Intersting supporting article for Ingress

microk8s enable ingress

Ingress_Service.yaml

apiVersion: v1
kind: Service
metadata:
 name: ingress
 namespace: ingress
spec:
 selector:
 name: nginx-ingress-microk8s
 type: LoadBalancer
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 80
 - name: https
 protocol: TCP
 port: 443
 targetPort: 443

You will see the ip set for external (thanks to MetalLB as there service is of type LoadBalancer)

The new method requires additional addons
enabled:

Deploy the Ingress Service

https://adrin-mukherjee.medium.com/demystifying-kubernetes-ingress-b725f9f52ebc

Ingress definition

piVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: web-ingress
spec:
 ingressClassName: nginx
 rules:
 - host: api.davidsells.today
 http:
 paths:
 - path: /users
 pathType: Prefix
 backend:
 service:
 name: user-service
 port:
 number: 8081
 - path: /products
 pathType: Prefix
 backend:
 service:
 name: item-service
 port:
 number: 9091
 - path: /ng
 pathType: Prefix
 backend:
 service:
 name: ng-service
 port:
 number: 9999

Deploy.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: metallb-test
 namespace: lb-test
spec:
 replicas: 2
 selector:
 matchLabels:
 app: metallb-test
 template:
 metadata:
 labels:
 app: metallb-test
 spec:
 containers:
 - name: metallb-test
 image: nginx:latest
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 creationTimestamp: null
 name: ng-service
 namespace: lb-test
 labels:
 app: ng-service
spec:
 ports:
 - port: 9999
 protocol: TCP
 targetPort: 80
 selector:
 app: metallb-test
 type: ClusterIP
status:
 loadBalancer: {}

Install Cloudflared

We have a deployment wih bridges to ingresses We were looking at having some content in the
nginx servers. ie. unique html pages

sc.yaml

wget -q https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb && sudo dpkg -i cloudflared-linux-amd64.deb

cloudflared tunnel login

cloudflared tunnel create llm

vi config.yaml

tunnel: 9a27e9b6-208c-460e-ba6e-9182c2437fb1

credentials-file: /root/.cloudflared/9a27e9b6-208c-460e-ba6e-9182c2437fb1.json

ingress:

- hostname: web.davidsells.today

 service: http://10.203.176.200:80

- service: http_status:404

cloudflared tunnel route dns llm web.davidsells.today

cloudflared tunnel run llm

curl http://10.203.176.200:80

vi config.yaml

cloudflared tunnel run kubernetes

cloudflared service install

systemctl start cloudflared

NOTE:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: openebs-zfspv
parameters:
 recordsize: "4k"
 compression: "off"
 dedup: "off"
 fstype: "zfs"
 poolname: "kube_zfs"
 mountOptions: "zfsutil"
provisioner: zfs.csi.openebs.io
volumeBindingMode: WaitForFirstConsumer

apiVersion: v1
kind: PersistentVolume
metadata:
 name: html-pv
 namespace: lb-test-one
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 local:
 path: /mnt/data
 storageClassName: openebs-zfspv
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: Exists

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: html-pvc
 namespace: lb-test-one
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

You create a StorageClass YAML that defines the provisioner and parameters for creating a PV.
You create a PVC YAML that references the StorageClass. When you create the PVC, the
StorageClass provisioner (in this case, zfs.csi.openebs.io) dynamically creates a PV that
matches the PVC's requirements.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: metallb-test-one
 namespace: lb-test-one
spec:
 replicas: 2
 selector:
 matchLabels:
 app: metallb-test-one
 template:
 metadata:
 labels:
 app: metallb-test-one
 spec:
 containers:
 - name: metallb-test-one
 image: nginx:latest
 ports:
 - containerPort: 80
 volumeMounts:
 - name: html-volume
 mountPath: /usr/share/nginx/html
 volumes:
 - name: html-volume
 persistentVolumeClaim:
 claimName: html-pvc

We were also talking with Groq about zfs settings and found that there was more than one
mount point...

However then we lost it:

79 find . -type d -name kube_zfs 2> /dev/null

We like the idea of nginx server with unique html pages that also have memory: StorageClass,
PersistentVolume etc...

Excellent discussion of Mayastore

Another excellent presentation - perhaps better

Let's depart from this for a bit. There were some short comings in our understanding of replicate
sets and storage. Our expectation of syncrhonization between the pvc were not met. replicate
sets, StatefulSets and DaemonSets were not what we were looking for. So if we use a
deployment with a template for replicats it will also be creating an additional pvc that will be
independent of other pvc contained within the set.

Updating a PVs contents

Get PV name
kubectl get pvc <pvc-name> -o jsonpath='{.spec.volumeName}'
kubectl get pvc html-pvc -o jsonpath='{.spec.volumeName}'

Get Data set name
kubectl get pv <pv-name> -o jsonpath='{.spec.local.path}'

Mount Dataset
zfs set mountpoint=/mnt/data/<dataset-name> kube_zfs/<dataset-name>
zfs mount kube_zfs/<dataset-name>

Update Data
echo "<html><body><h1>New HTML content!</h1></body></html>" > /mnt/data/<dataset-name>/index.html

Unmount Datset
zfs unmount kube_zfs/<dataset-name>
zfs mount kube_zfs/<dataset-name>

NOTE

https://www.youtube.com/watch?v=xLPRh-jJyQI
https://www.youtube.com/watch?v=n1npnB37lN8

In this section we will deploy OpenWebUI, Ollama and LiteLLM. OpenWebUI provides a
wonderful platform for experimenting with LLMs. Coupled with LiteLLM it gives it access to
integration with external LLM providers.

The worker nodes do not have access to the external internet. We need to setup a local
repository that is accessible to worker1 and worker2.

Using the lxd-ui create a new container insure that you use the default and microk8s profiles

Let's make this easy by using snap.

This article from DigitalOcean's website is very good. No need to repeat here:

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-private-docker-registry-on-
ubuntu-20-04

imagePullSecret

Part Four: LLM Deployments

Trouble Shooting

Local Registry for Worker nodes

Setting up Registry

Create a new lxd container

Install Docker

Setting up Docker Registry

